Current Project: Sheaves on moment graphs, Kazhdan-Lusztig theory and generalized Schubert calculus.
- Sheaves on moment graphs and Riemann-Roch type formulas
- Structure algebras, finite real reflection groups and equivariant motives
- Kazhdan-Lusztig theory and generalized Schubert calculus
Slides of talks/Lecture Notes:
- Twisted quadratic foldings of root systems
- Equivariant motives and sheaves on moment graphs
- Localized Landweber-Novikov operations on generalized cohomology
Papers:
- Lanini, M., Zainoulline, K. A Riemann-Roch type theorem for twisted fibrations of moment graphs.
- Zainoulline, K. Localized operations on T-equivariant oriented cohomology of projective homogeneous varieties
- Lanini, M., Zainoulline, K. Twisted quadratic foldings of root systems.
- Devyatov, R., Lanini, M., Zainoulline, K. Oriented cohomology sheaves on double moment graphs.
- Lenart, C., Su, C., Zainoulline, K., Zhong, C. Geometric properties of the Kazhdan-Lusztig Schubert basis.
- Lenart, C., Zainoulline, K., Zhong, C. Parabolic Kazhdan-Lusztig basis, Schubert classes and equivariant elliptic cohomology.
- Lenart, C., Zainoulline, K. A Schubert basis in equivariant elliptic cohomology.
- Lenart, C., Zainoulline, K. Towards generalized cohomology Schubert calculus via formal root polynomials.
Current Project: Equivariant algebraic oriented cohomology and localization techniques
- Equivariant oriented cohomology theories.
- Representations of Hecke-type algebras and motives of twisted flag varieties.
Slides of talks/Lecture notes:
Papers:
- Calmes, B., Zainoulline, K., Zhong, C. Formal affine Demazure and Hecke algebras of Kac-Moody root systems.
- Calmes, B.; Zainoulline, K.; Zhong, C. Equivariant oriented cohomology of flag varieties.
- Calmes, B., Zainoulline, K., Zhong, C. Push-pull operators on the formal affine Demazure algebra and its dual.
- Calmes, B., Zainoulline, K., Zhong, C. A coproduct structure on the formal affine Demazure algebra.
- Hoffnung, A., Malagon-Lopez, J., Savage, A., Zainoulline, K. Formal Hecke algebras and algebraic oriented cohomology theories.
- Calmes, B.; Petrov, V.; Zainoulline, K. Invariants, torsion indices and cohomology of complete flags.
- Gille, S.; Zainoulline, K. Equivariant pretheories and invariants of torsors.
- Nenashev, A.; Zainoulline, K. Oriented cohomology and motivic decompositions of relative cellular spaces.
Applications to motives and representations:
- Calmes, B., Neshitov, A., Zainoulline, K. Relative equivariant motives versus modules.
- Neshitov, A., Petrov, V., Semenov, N., Zainoulline, K. Motivic decompositions of twisted flag varieties and representations of Hecke-type algebras.
Project: Topological and the gamma-filtration on twisted flag varieties.
- Topological and gamma-filtration of twisted flag varieties.
- Applications to cohomological invariants (the Rost invariant)
- Applications to the torsion problem in Chow groups.
Slides of talks:
Papers:
- Baek, S., Devyatov, R., Zainoulline, K. The K-theory of versal flags and cohomological invariants of degree 3. Documenta Math. 22 (2017), 1117-1148.
- Merkurjev, A., Neshitov, A., Zainoulline, K. Cohomological Invariants in degree 3 and torsion in the Chow group of a versal flag. Compositio Math. 151, Issue 8, (2015), 1416–1432.
- Malagon-Lopez, J.; Zainoulline, K.; Zhong, C. Invariants, exponents and formal group laws. J. of Algebra 409, July 1, (2014), 244-264.
- Baek, S., Zainoulline, K., Zhong, C. On the torsion of Chow groups of twisted Spin-flags. Math. Research Letters 20 (2013), no.4, 601-614.
- Garibaldi, S.; Zainoulline, K. The gamma-filtration and the Rost invariant. J. Reine und Angew. Math. 696 (2014), 225–244.
- Zainoulline, K. Twisted gamma-filtration of a linear algebraic group. Compositio Math. 148 (2012), no.5, 1645-1654.
- Queguiner-Mathieu A.; Semenov, N.; Zainoulline, K. The J-invariant, Tits algebras and Triality. J. of Pure and Applied Algebra 216 (2012), 2614-2628.
- Baek, S.; Neher, E.; Zainoulline, K. Basic polynomial invariants, fundamental representations and the Chern class map. Documenta Math. 17 (2012), 135–150.
Project: Motivic decompositions and algebraic cycles on twisted flag varieties
- Motivic decomposition of generically split twisted flag varieties.
- The J-invariant of a linear algebraic group.
- The canonical dimension of a linear algebraic group.
Maple package to work with algebraic cycles
Papers:
- Zainoulline, K. Degree formula for connective K-theory. Invent. Math. 179 (2010), no.3, 507-522.
- Zainoulline, K. Special correspondences and Chow traces of Landweber-Novikov operations. J. Reine und Angew. Math. 628 (2009), 195-204.
- Semenov, N.; Zainoulline, K. Essential dimension of Hermitian spaces. Math. Annalen 346 (2009), no.2, 499-503.
- Nikolenko, S.; Semenov, N.; Zainoulline, K. Motivic decompositions of anisotropic varieties of type F4 into generalized Rost motives. J. of K-theory 3 (2009), no.1, 85-102.
- Petrov, V.; Semenov, N.; Zainoulline, K. J-invariant of linear algebraic groups. Ann. Sci. Ecole Norm. Sup. (4) 41 (2008), no.6, 1023-1053.
- Vishik, A.; Zainoulline, K. Motivic Splitting Lemma. Documenta Math. 13 (2008), 81-96.
- Petrov, V.; Semenov, N.; Zainoulline, K. Zero-cycles on a twisted Cayley plane. Canadian Math. Bull. 51 (2008), no.1, 114-124.
- Zainoulline, K. Canonical p-dimensions of algebraic groups and degrees of basic polynomial invariants. London Math. Bull. 39 (2007), 301-304.
- Calmes, B.; Petrov, V.; Semenov, N.; Zainoulline, K. Chow motives of twisted flag varieties. Compositio Math. 142 (2006), no.4, 1063-1080.
- Semenov, N.; Zainoulline, K. A classification of projective homogeneous varieties up to motivic isomorphism (English. Russian original). J. Math. Sciences 140 (2007), no.5, 692-698; transl. Zap. Nauchn. Semin. POMI 330 (2006), 158-172.
Project: The Grothendieck-Serre conjecture, the Purity and the Gersten conjecture.
(an old project related to my PhD thesis)
The conjecture has been recently proven by Fedorov and Panin
(see arXiv.org preprints http://arxiv.org/abs/1211.2678, http://arxiv.org/abs/1406.0241, http://arxiv.org/abs/1406.0247 and http://arxiv.org/abs/1406.1129)
Directions:
- Gersten resolutions, Gersten conjecture and Purity problem for presheaves with transfers
- Geometric presentation lemmas via general position arguments
- Grothendieck-Serre’s conjecture on G-torsors. (short overview on what was done before 2007)
Papers:
- Panin, I.; Zainoulline, K. Gersten resolution with support. Manuscripta Math. 128 (2009), no. 4, 443-452.
- Ojanguren, M.; Panin, I.; Zainoulline, K. On the norm principle for quadratic forms. J. Ramanujan Math. Soc. 19 (2004), no.4, 1-12.
- Zainoulline, K. On Knebusch’s Norm Principle for quadratic forms over semi-local rings. Math. Zeitschrift 251 (2005), no.2, 415-425.
- Panin, I.; Zainoulline, K. Variations on the Bloch-Ogus Theorem. Documenta Math. 8 (2003), 51-67.
- Schmidt, A.; Zainoulline, K. Generic injectivity for etale cohomology and pretheories. J. of Algebra 263 (2003), no.2, 215-227.
- Zainoulline, K. The Purity Theorem for functors with transfers. K-Theory J. 22 (2001), no.4, 303-333. (came out of PhD thesis)
- Zainullin, K. On Grothendieck’s conjecture about principal homogeneous spaces for some classical algebraic groups. (English. Russian original) St. Petersburg Math. J. 12 (2001), no.1, 117-143; translation from Algebra i Analiz 12 (2000), no.1, 150-184. (came out of PhD thesis)